Репетиторские услуги и помощь студентам!
Помощь в написании студенческих учебных работ любого уровня сложности

Тема: Контрольная по металлургии

  • Вид работы:
    Контрольная работа по теме: Контрольная по металлургии
  • Предмет:
    Другое
  • Когда добавили:
    22.03.2012 11:30:24
  • Тип файлов:
    MS WORD
  • Проверка на вирусы:
    Проверено - Антивирус Касперского

Другие экслюзивные материалы по теме

  • Полный текст:

                                                  Содержание

    1. Новые методы производства и повышения качества стали

    2. Строение и основные свойства металлов и сплавов

    3. Плавление и кристаллизация металлов

    4. Применение чистых металлов

    5. Электрофизические методы обработки металлов. Диаграмма железоуглерод


          1. Новые методы производства и повышения качества стали

              Методы производства. Химико-термическая обработка - тепловая обработка металлов в различных химически активных средах с целью изменения химического состава и структуры поверхностного слоя металла, повышающих его свойства.

              В зависимости от элемента, насыщающего поверхность заготовки, различают следующие виды обработки: цементацию, азотирование, цианирование, диффузионную металлизацию.

              Цементацией называется процесс насыщения углеродом поверхностного слоя заготовок из низкоуглеродистой ( до 0.3% С) стали для создания в них после термической обработки твердой поверхности при достаточной вязкости сердцевины. Различают цементацию в твердом карбюризаторе ( древесном угле с добавками различных углекислых солей), жидкую и газовую.

              Поверхности заготовок, не подлежащие цементации, защищают омеднением, т. е. нанесением тонкого слоя меди и другими способами.

              Азотирование - процесс диффузионного насыщения азотом поверхностного слоя заготовок, изготовленных из легированных сталей. Такие легирующие элементы, как алюминий, хром, молибден и др., при азотировании образуют с азотом твердые и стойкие химические соединения- нитриды.

              Азотирование протекает при более низкой температуре, нежели цементация, что является его преимуществом. Азотированная поверхность имеет более высокую твердость, износостойкость и коррозионную стойкость, которые сохраняются неизменными при повторных нагревах вплоть до 500-600 градусов С.

              Цианирование заключается в одновременном насыщении поверхностей заготовок азотом и углеродом. Процесс цианирования может выполняться в жидкой и газовой среде. В зависимости от температуры цианирование подразделяется на  низкотемпературное (530-650) и высокотемпературное (800-930). При цианировании используются ядовитые вещества.

              Жидкостное цианирование осуществляется в ваннах, содержащих цианистые и нейтральные соли. При температуре, равной примерно 900 градусам С, поверхности незначительно насыщаются азотом и цианирование практически превращается в процесс цементации. Низкотемпературное цианирование незначительно отличается от азотирования. После цианирования детали подвергаются термической обработке.

              Газовое цианирование, или нитроцементация, выполняется в газовй среде, состоящей из цементирующего и нитрирующего газов. При высокотемпературной нитроцементации глубина цианированного слоя может достичь 1.8 мм при длительности процесса 6-7 ч.

              Диффузионная металлизация- это процесс насыщения поверхностного слоя заготовок различными химическими элементами при совместном их нагревании и выдержке. В зависимости от используемого элемента процессы металлизации получили названия: алитирование, хромирование и т. д.

              Диффузионная металлизация может выполняться в твердых, жидких и газообразных средах. Этот процесс обеспечивает повышение твердости, коррозионной стойкости, жаростойкости и износостойкости поверхностей деталей.

              Основным недостатком диффузионной металлизации является малая глубина металлизированного слоя (0.2-0.4 мм) при относительно большой длительности процесса.

    Виды термической и химико-термической обработки и ее влияние на структуру и свойства стали.

    Термической обработкой деталей из металлов и сплавов называется тепловое воздействие с целью придания им необходимых свойств. Тепловое воздействие может сочетаться одновременно с химическим  воздействием. Такие процессы относятся к химико-термическим.

              Различают следующие виды термической обработки: отжиг, закалку, отпуск, старение.

              Отжиг бывает 1-го и 2-го рода. Сущность отжига 1-го рода заключается в нагреве заготовок выше температуры фазового превращения с последующим медленным охлаждением. Различают следующие разновидности отжига 1-го рода:

              - гомогенизационный, применяемый для выравнивания структуры, особенно крупных стальных отливок, поковок;

              - реклисталлизационный, устраняющий изменения структуры, возникающие, в частности, в процессе обработки металлов давлением, при котором они получают наклеп, сопровождаемый заметным повышением твердости и снижением пластичности;

              - отжиг, снимающий или уменьшающий остаточные внутренние напряжения, возникающие при различных технологических операциях.

              С помощью отжига 2-го рода, или полного отжига, изменяют структуру сплава и устраняют внутренние напряжения. Заготовки нагревают до температуры, пресыщающей на  30-50 градусов С температуру фазового превращения, и медленно охлаждают вместе с печью. Такой процесс термообработки проводят после штамповки, отливки заготовок, а также после черновой механической обработки с целью понижения твердости.

              Разновидностью отжига 2-го рода является нормализация, при которой заготовки охлаждают на воздухе. В отдельных случаях нормализация улучшает обрабатываемость материалов резанием, вызывая некоторое повышение механической прочности.

              Закалка - это процесс, осуществляемый для повышения твердости и прочности материала. При закалке заготовки нагревают выше температуры превращения и быстро охлаждают в воде, минеральном масле, растворах солей или в расплавленных солях (270-290 градусов С). Тип охлаждающей среды определяет скорость охлаждения, которая влияет на получение той или иной структуры.

              Большинство конструкционных сталей нагревают при закалке до температуры 850-900 градусов С, а охлаждают в воде, масле или соляных растворах. Охлаждение в расплавленных солях применяют для высоколегированных сталей, например инструментальных, быстрорежущих сталей, содержащих большое количество легирующих элементов.

              В зависимости от температуры нагрева различают закалку полную и неполную. При полной закалке углеродистых сталей в холодной воде получают структуру мартенсита, имеющий весьма высокую твердость и большую хрупкость. Если охлаждение стали вести менее интенсивно, то можно получить менее твердые и напряженные структуры троосита. Для уменьшения хрупкости и внутренних напряжений, стали подвергают отпуску.

              Отпуск - нагрев закаленных заготовок до температуры, лежащих ниже температуры фазового превращения, и охлаждения их на воздухе. Повышая температуру отпуска, можно повысить пластичность и вязкость материала при одновременном понижении твердости и прочности. Отпуск при высоких температурах нагрева называют улучшением.

              Различают низкий, средний и высокий отпуск. Низкий отпуск, т. е. нагрев стали до небольшой температуры (150-200 градусов С), ведет к понижению остаточных внутренних напряжений при сохранении ее высокой твердости и износостойкости. Средний отпуск, сохраняя повышенную твердость, обеспечивает достаточную прочность, упругость и выносливость. Ее часто применяют при изготовлении пружин и рессор.

              При высоком отпуске получают достаточно высокий предел упругости при достаточной ударной вязкости и твердости. В результате высокого отпуска получают структуру, которая необходима для деталей машин, подвергающихся действию высоких напряжений и ударным переменным нагрузкам ( для шатунов, болтов и др.).

              При всех процессах получения заготовок деталей их материал приходит в напряженное состояние, характеризуемое определенным уровнем внутренних напряжений. Поэтому перед началом механической обработки или перед окончательными операциями технологического процесса механической обработки часто проводят старение, которое ускоряет релаксацию внутренних напряжений.

              Различают естественное старение- длительное выдерживание деталей на складах при воздействии на них непрерывно изменяющихся атмосферных факторов, а также искусственное старение с нагревом заготовок в печах до температуры 100-150 градусов С и охлаждением вместе с печью.

              Для ряда изделий из закаленных легированных сталей назначают термическую обработку при отрицательных температурах. В этом случае материал получает стабильную структуру и размеры и одновременно некоторое повышение твердости, износостойкости.

              В качестве охлаждающей среды используется углекислота. Обработка холодом выполняется непосредственно после закалки, перед отпуском.

    Контроль качества стали предполагает проведение ряда операций и приемов, обеспечивающих заданный уровень качества металла в процессе его производства, а также оценку соответствия фактических потребительских характеристик и товарного вида готовой продукции требованиям стандартов.

    К наиболее распространенным дефектам  относятся химическая и структурная неоднородность, повышенное содержание вредных примесей и неметаллических включений, дефекты макро- и микроструктуры, внутренние дефекты, дефекты формы и поверхности изделий и т. д.

    Для контроля и оценки разработаны специальные методы испытаний и средства измерения, а также соответствующие документы, характеризующие условия поставки и приемки. Применяются стандартные образцы, с которыми сравнивают фактические образцы с помощью спектрального, рентгеновского и других анализов.

    Номенклатура показателей качества зависит от вида поставок и назначения стали. Для оценки качества металла определяют его химический состав, механические свойства, делают макро- и микроструктурные анализы, производят внешний осмотр и др.

    Химический состав является основной и важной характеристикой качества стали, так как весь комплекс физических, химических, механических и технологических  свойств зависит от содержания углерода, вредных, полезных и сопутствующих элементов. Химический состав во многом определяет режим последующей обработки сталей давлением, сваркой и термической обработкой, а также структуру и свойства полученных изделий.

    Анализ химического состава проводится для каждой плавки стали отбором средней пробы при разливке металла в слитки. Пробы заливают в чугунные стаканчики-изложницы, а после затвердения из них сверлением или строганием получают стружку металла для химического анализа. Результаты анализа вносят в сертификат на сталь данной плавки.

    Наиболее распространенными нормируемыми показателями механических свойств металлов являются уровень твердости, прочность, относительное удлинение и сужение, ударная вязкость и др. Приведенные свойства стали определяются как в исходном, так и в отожженном или термически обработанном состоянии. После проведения анализа выясняют соответствие полученных данных требованиям стандартов.

     Макроструктурный анализ применяется для исследования структуры сталей невооруженным глазом или при увеличении ее в 30 раз с помощью лупы. Изучение макроструктуры производится темя методами: методом изломов, методом макрошлифов и просмотром отшлифованной и протравленной поверхности готового изделия. Метод изломов позволяет определить наличие дефектов во внутреннем строении материала, толщину слоя поверхностной обработки, размеры зерен и их  взаимное расположение и т. д. Метод макрошлифов основан на исследовании специальных макрошлифов, которые представляют собой продольные или плоские поперечные образцы, вырезанные  из изделий. В результате анализа определяется волокнистость материала, неоднородность химического состава, а также дефекты внутреннего строения. Просмотром отшлифованной и протравленной поверхности готового изделия контролируется качество различной металлопродукции: слитков и отливок, изделий, полученных обработкой давлением, сваркой, механической и поверхностной обработкой и др. В процессе микроструктурного анализа структуру стали исследуют с помощью микроскопа. Строение металла, наблюдаемое при увеличении в 50-2000 раз, называется микроструктурой. Наибольшее распространение получили оптические микроскопы. Для изучения микроструктуры  образец вырезают в продольном или поперечном направлении, затем шлифуют, полируют до зеркального блеска и протравливают специальным реактивом.

    Также получили распространение специальные физические методы контроля скрытых дефектов в металлических изделиях без их разрушения. Совокупность этих методов называется дефектоскопией. Основными видами дефектоскопии являются ультразвуковая, магнитная, рентгеновская, люминесцентная и др.

    Показатели качества металлов и изделий оформляются документом, которые делятся на две основные группы. Первая группа документов определяет технические требования к качеству металлов и изделий: ГОСТы, ТУ, наряд заказы и т. п., вторая - характеризует качество изделий данной партии или марки: сертификат о качестве, акт проверки качества и т. д.

    Разработан ряд  новых и эффективных способов повышения качества стали непосредственно в металлургическом  производстве. Эти способы основаны, во-первых, на более полном удалении из сталей газов и вредных неметаллических включений и, во-вторых, на изменении химического состава сталей за счет ввода в них специальных легирующих элементов, улучшающих различные свойства сталей.

     В выплавленной стали всегда содержится определенное количество газов и неметаллических включений. Содержание газов даже в сотых и тысячных долях процента существенно снижает механические и другие свойства стали. Неметаллическими включениями, содержащимися в стали, являются соединения железа, кремния, марганца и др. Основными металлургическими способами снижения содержания газов и неметаллических включений в стали являются: электрошлаковый ее переплав, рафинирование синтетическим шлаком, вакуумная дегазация, вакуумно-дуговой переплав, переплав в электроннолучевых печах и др. Снижение в стали неметаллических включений достигается также изменением сочетания и последовательности введения раскислителей.

              При электрошлаковом переплаве из металла, подлежащего обработке, вначале изготавливают электроды, которые затем опускают в сой рабочего флюса, обладающего высоким сопротивлением. При прохождении электрического тока рабочий флюс плавится и образуется шлак, который выделяет тепло. Проходя через жидкий шлак, капли металла очищаются от вредных примесей и образуют высококачественный слиток. Этот метод целесообразно применять при получении высококачественных шарикоподшипниковых сталей, жаропрочных сплавов, изготовлении деталей турбин и др.

              Сущность обработки металла синтетическим шлаком заключается в том, что жидкую сталь из плавильной печи выливают в ковш со специальным синтетическим шлаком с большой высоты. При бурном перемешивании  шлак всплывает, сталь получается чистой. Рафинирование жидким синтетическим шлаком в ковше улучшает макроструктуру стали, удаляет до 70% серы. Этот способ нашел широкое применение при обработке конвертерной, мартеновской стали, а также электрометалла.

              Вакуумная дегазация - один из наиболее распространенных способов повышения качества стали - заключается в удалении из стали водорода, кислорода и азота. При вакуумировании резко повышаются  механические свойства сталей. основными способами вакуумной обработки являются вакуумирование в ковше, вакуумирование струи металла при переливе из ковша в ковш или при заливке в изложницу и др. Установлено, что при вакуумировании струи содержание водорода в металле снижается на 60-70%, а содержание азота- до 40%. В результате взаимодействия с углеродом металл очищается от кислородных оксидных включений.

              Одним из наиболее распространенных способов вакуумирования  является вакуумно-дуговой переплав в печах с расходуемым электродом. При этом выплавленную сталь переплавляют повторно в вакуумном пространстве с помощью электрической дуги. В результате оплавления металла в вакууме происходит дегазация и сталь приобретает новые, более высокие механические свойства.

              Сущность вакуумирования в электроннолучевых печах заключается в том, что на переплавляемый металл, находящийся в вакуумной камере, направляют электронные лучи из катодов. В процессе воздействия высокой температуры металл расплавляется и рафинируется в вакууме.

    Существенное влияние на свойства сталей оказывает легирование- намеренное введение в состав сплава соответствующих компонентов. Это приводит к изменению не только механических, химических и технологических, но и специальных свойств сталей. Основными легирующими элементами являются: кремний, марганец, никель, хром, вольфрам, алюминий, молибден, ванадий, титан, кобальт, медь и другие металлы.

              Различные легирующие элементы, водимые в сталь, неоднозначно влияют на ее свойства. Так, кремний  является эффективным раскислителем  и применяется при получении  «спокойной» стали. Как легирующий элемент вводится в сталь для повышения ее прочности, стойкости к коррозии и жаростойкости.

    Марганец - важнейший компонент стали. Применение его как легирующего элемента  способствует повышению прокаливаемости стали характеризующей глубину закаленной зоны при термической обработке. При введении в сталь 10-12% марганца она размагничивается. Никель повышает прочность и ударную вязкость стали, увеличивает ее прокаливаемость и сопротивление коррозии. Хром  повышает твердость и прочность, сохраняет ударную вязкость сталей, способствует сопротивлению на истирание, резко увеличивает стойкость к коррозии. При введении в сталь более 10% хрома она  становится нержавеющей. Вольфрам повышает твердость легированных сталей и улучшает режущие  свойства  инструментальной стали. Алюминий повышает жаростойкость и коррозийную стойкость стали, а молибден- прочность, упругость, износостойкость и ряд специальных свойств стали. Ванадий повышает твердость, прочность и плотность стали.

              На свойства стали влияет углерод, входящий в состав стали. С увеличением содержания углерода до 1.2% твердость и прочность сталей повышается, но снижается пластичность и ударная вязкость; при этом ухудшаются такие технологические свойства сталей, как ковкость, свариваемость, обработка резанием и др., одновременно улучшаются литейные свойства сталей.





















                2. Строение и основные свойства металлов и сплавов


    Металлами называются вещества, обладающие высокой теплопроводностью и электрической проводимостью; ковкостью, блеском и другими характерными свойствами.

    В технике все металлы и сплавы принято делить на черные и цветные. К черным металлам относятся железо и сплавы на его основе. К цветным — все остальные металлы и сплавы. Для того чтобы правильно выбрать материал для изготовления деталей машин с учетом условий их эксплуатации, механических нагрузок и других факторов, влияющих на работоспособность и надежность машин, необходимо знать внутреннее строение, физико-химические, механические и технологические свойства металлов.

    Металлы и их сплавы в твердом состоянии имеют кристаллическое строение. Их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке и образуют пространственную кристаллическую решетку.

    Наименьший комплекс атомов, который при многократном повторении в пространстве воспроизводит решетку, называется элементарной кристаллической  ячейкой.

    Форма элементарной кристаллической ячейки определяет совокупность свойств металлов: блеск, плавкость, теплопроводность, электропроводность, обрабатываемость и анизотропность (различие свойств в различных плоскостях кристаллической решетки) .

    Пространственные кристаллические решетки образуются при переходе металла из жидкого состояния в твердое. Этот процесс называется кристаллизацией. Процессы кристаллизации впервые были изучены русским ученым Д. К- Черновым.

    Кристаллизация состоит из двух стадий. В жидком состоянии металла его атомы находятся в непрерывном движении. При понижении температуры движение атомов замедляется, они сближаются и группируются в кристаллы. Образуются так называемые центры кристаллизации  (первая стадия). Затем идет роет кристаллов вокруг этих центров (вторая стадия). Вначале кристаллы растут свободно. При дальнейшем росте кристаллы отталкиваются, рост одних кристаллов мешает росту соседних, в результате чего образуются неправильной формы группы кристаллов, которые называют зернами.

    Размер зерен существенно влияет на эксплуатационные и технологические, свойства металлов. Крупнозернистый металл имеет низкую сопротивляемость удару, при его обработке резанием возникает трудность в получении малой шероховатости поверхности деталей. Размеры зерен зависят от природы самого металла и условий кристаллизации.

    Методы изучения структуры металла. Исследование структур металлов и сплавов производится с помощью макро- и микроанализа, а также другими способами.

    Методом макроанализа изучается макроструктура, т. е. строение металла, видимое невооруженным глазом или с помощью лупы. Макроструктуру определяют по изломам металла или по макрошлифам.

    Макрошлиф представляет собой образец металла или сплава, одна из сторон которого отшлифована и протравлена кислотой или другим реактивом. Этим методом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри, неравномерность распределения примесей в металле и т. д.

    Микроанализ позволяет определить размеры и форму зерен, структурные составляющие, качество термической обработки, выявить микродефекты.

    Микроанализ проводится по микрошлифам с помощью микроскопа (современные металлографические микроскопы дают увеличение до 2000, а электронные - до 25 000).

    Микрошлиф - это образец металла, имеющий плоскую полированную поверхность, подвергнутую травлению слабым раствором кислоты или щелочи для выявления микроструктуры. Свойства металлов. Свойства металлов обычно подразделяют на физико-химические, механические и технологические. Физико-химические и механические свойства твёрдых тел, в том числе и металлов, вам знакомы из курсов физики и химии. Остановимся на рассмотрении некоторых механических и технологических свойств, важных с точки зрения обработки металлов.

    Под механическими свойствами, как известно, понимают способность металла или сплава сопротивляться воздействию внешних сил. К механическим свойствам относят прочность, вязкость, твердость и др.

    Прочность характеризует свойство металла или сплава в определенных условиях и пределах, не разрушаясь, воспринимать те или иные воздействия внешних сил.

    Важным свойством металла является ударная вязкость - сопротивление материала разрушению при ударной нагрузке.

    Под твердостью понимают свойство материала сопротивляться внедрению в него другого, более твердого тела.

    Механические свойства  материалов  выражаются  через  ряд показателей (например, пределы прочности при растяжении, относительное удлинение и сужение и т.д.)

    Пределом прочности при растяжении, или временным сопротивлением разрыву, называется условное напряжение, соответствующее максимальной нагрузке, которую выдерживает образец в процессе испытания до разрушения

    Твердость металлов и сплавов определяют в основном с помощью трех методов, названных по именам их изобретателей: метод Бринелля, метод Роквелла и метод Виккерса. I   Измерение твердости по методу Бринелля заключается в том, что с помощью твердомера ТШ в поверхность испытуемого металла  вдавливается  стальной  закаленный  шарик  диаметром 2,5 5 или 10 мм  под действием статической -нагрузки  Р.  Отношение  нагрузки  к  площади  поверхности  отпечатка (лунки) дает значение твердости, обозначаемое НВ.

    Измерение твердости по Роквеллу осуществляется с помощью прибора ТК вдавливанием в испытуемый металл шарика диаметром 1,59 мм (1/16 дюйма) или алмазного конуса с углом при вершине 120° (для особо твердых сталей и сплавов). Показания твердости определяются по индикатору прибора.

    Измерение твердости по Виккерсу производится с помощью прибора ТП вдавливанием в металл алмазной четырехгранной пирамиды с углом при вершине а= 136°. По длине диагонали полученного отпечатка с помощью таблицы находят число твердости HV.

    Применение того или иного метода зависит от твердости испытуемого образца, его толщины или толщины испытуемого слоя. Например, методом Виккерса пользуются для измерения твердости закаленных сталей, материалов деталей толщиной до 0,3 мм и тонких наружных цементированных, азотированных и других поверхностей деталей.

    К основным технологическим свойствам металлов и сплавов относятся следующие: ковкость - свойство металла подвергаться ковке и другим видам обработки давлением; жидкотекучесть - свойство расплавленного металла заполнять литейную форму во всех ее частях и давать плотные отливки точной конфигурации; свариваемость - свойство металла давать прочные сварные соединения; обрабатываемость резанием - свойство металлов подвергаться обработке режущими инструментами для придания деталям пределенной формы, размеров и шероховатости поверхности.








                        3. Плавление и кристаллизация металлов


    Обычно процесс плав­ления рассматривается как непрерывный, в котором трудно или невоз­можно усмотреть элементарный акт. Или процесс плавления рассматри­вается как атомарный, в котором процесс перехода отдельного атома твердого тела в жидкость и есть элементарный акт, а отдельные атомы являются структурными единицами вещества в жидком состоянии, как и в твердом, и в газовом.

    Но это допущение неверно, поскольку свойства агрегатных состоя­ний, например свойство тела быть жидким или твердым, не присущи от­дельным атомам. Выше было сказано, что отдельный атом (молекула) не может быть твердым, жидким или газообразным. Свойства агрегатных со­стояний проявляются только на уровне неких агрегатов частиц вещества и элементов пространства.

    Образование такого минимального агрегата частиц вещества и элементов пространства, несущего признаки данного состояния, мы и называем здесь элементарным актом образования того или иного агрегатного со­стояния, в данном случае жидкого состояния.

    Двумя основными факторами, приводящими к плавлению, являются, с одной стороны, нарастание давления газа вакансий, а с другой - падение прочности металлов и сплавов с ростом температуры.

    Сплавы системы железо-углерод - стали и чугуны относятся к широко распространенным промышленным сплавам. Чугуны имеют наиболее ши­рокое применение в литейном производстве. Поэтому изучение строения жидких чугунов в связи с процессами кристаллизации и структурообразования представляется весьма полезным.

    Сплавы железо-углерод относятся к сплавам с ограниченной раство­римостью компонентов в твердом состоянии и с не вполне определенной растворимостью компонентов друг в друге в жидком состоянии. Эта неоп­ределенность вызвана тем, что никому еще не удавалось получить сплав железа с углеродом с содержанием углерода выше 25% ат. в связи с необ­ходимостью получения стабильной и точно измеримой температуры для исследований выше 2000 °С. Но это не единственная особенность этого рода сплавов.

    Сплавы железо-углерод отличаются еще и тем, что один из компо­нентов этих сплавов - углерод - в свободном виде вообще не плавится и не образует жидкую фазу и в этом отношении представляет собой довольно Редкое, хотя и не единственное, исключение среди элементов периодиче­ской системы.

    С позиций теории плавления углерод в его наиболее стабильной форме графита не плавится потому, что его прочность с повы­шением температуры не падает, как у подавляющего большинства элемен­те, а даже несколько возрастает. А падение прочности, как отмечалось выше, является одним из необходимых факторов подготовки к плавлению.

    Кроме того, углерод в твердом состоянии практически не растворяет в себе никакие другие элементы. И известно лишь весьма ограниченное число элементов, образующих ограниченные растворы с углеродом, в том числе и железо. В то же время углерод охотно вступает в химические реакции   со многими элементами с образованием карбидов.

     Кристаллизация - это процесс образования зерен (кристаллитов) металла при его охлаждении. Кристаллитом называют кристалл неправильной формы. Возникновение и рост кристаллитов при переходе металла из жидкого состояния в твердое называют первичной кристаллизацией. Преобразование первичных кристаллитов при охлаждении затвердевшего металла, структурные превращения в нем, называют вторичной кристаллизацией.

    Процесс кристаллизации металла состоит из трех стадий. Это переохлаждение жидкого металла, образование центров кристаллизации и рост кристаллитов от этих центров.


                                     4. Применение чистых металлов


    Чистые металлы очень широко используются. Например, в строительстве сталь используют для изготовления конструкций, армирования железобетонных конструкций, устройства кровли, подмостей, ограждений, форм железобетонных изделий и т.д. Правильный выбор марки стали обеспечивает экономный расход стали и успешную работу конструкции.

    Для изготовления несущих (расчетных) сварных и клепаных конструкций рекомендуют следующие виды сталей: мартеновскую – марок ВМСтЗпс (сп, кп), низколегированную – марок 15ГС, 14Г2, 10Г2С, 10Г2СД; природно-легированную – марок 15ХСНД, 10ХСНД; кислородно-конвертерную – марок ВКСтЗсп (пс, кп).

    Стали марок Ст4 и Ст5 рекомендуют для конструкций, не имеющих сварных соединений, и для сварных конструкций, воспринимающих лишь статические нагрузки.

    Сталь для конструкций, работающих на динамические и вибрационные нагрузки и предназначенных для эксплуатации в условиях низких температур, должна дополнительно проверяться на ударную вязкость при отрицательных температурах.

    К стали для мостовых конструкций предъявляют специальные требования (ГОСТ 6713-75) по однородности и мелкозернистости, отсутствию внешних дефектов, прочностным и деформационным свойствам.

    Для армирования железобетонных конструкций сталь применяют в виде стержней, проволоки, сварных сеток, каркасов. Арматурная сталь может быть горячекатаная (стержневая) и холоднотянутая (проволочная). По форме сталь чаще всего бывает круглая, а для улучшения сцепления – периодического профиля. В отдельных случаях для повышения механических свойств сталь обрабатывают наклепом и применяют термическую обработку.

    Стержневую арматуру в зависимости от механических свойств делят на классы: A-I, A-II, A-III, A-IV и др. При обозначении класса термически упрочненной арматурной стали добавляют индекс «т» (например, Ат-III), упрочненную вытяжкой – «в» (например, А-Шв).

    Арматурная проволока может быть холоднотянутой класса B-I (низкоуглеродистой) для ненапрягаемой арматуры и класса В-II (углеродистой) для напрягаемой арматуры. Для обычного армирования преимущественно применяют арматурную сталь классов A-III (марок 25Г2С, 35ГС и др.), А-II (марок Ст5) и обыкновенную арматурную проволоку, а при особом обосновании также A-I (марки СтЗ) и А-IIв. Для предварительно напряженного армирования используют высокопрочную проволоку, арматурные пряди и арматуру класса A-IV (марок ЗОХГ2С, 20ХГСТ, 20ХГ2Ц и другие низколегированные стали), а также упрочненную вытяжкой сталь класса А-IIIв (марок 35ГС, 25Г2С).

    Сортамент прокатного металла и металлоизделий в строительстве разнообразен: сортовая сталь, прокатная сталь листовая, уголки, швеллеры, двутавры, трубы и другие служат основой для изготовления металлических конструкций (балки, колонны, фермы и т.д.). На сортаменты имеются ГОСТы наиболее рациональных типов профилей и частоты их градаций.

    Сортовая сталь: круглая (диаметром 10...210 мм) применяется для изготовления арматуры, скоб, болтов; квадратная (сторона квадрата 10...100 мм); полосовая (шириной 12...20 мм) – для изготовления связей, хомутов, бугелей.

    Сталь листовая включает листы толщиной от 4…160 мм, шириной 600...3800 мм; тонколистовая кровельная – черная и оцинкованная толщиной до 4 мм; широкополочная толщиной 6...60 мм, шириной 200...1500 мм, длиной 5...12 м.

    Уголковые профили (равнополочные и неравнополочные) выпускают площадью сечения 1,0...140 см2.

    Швеллеры характеризуются сечением швеллеров и определяются его номером, который соответствует высоте стенки швеллера в сантиметрах.

    Двутавры – основной балочный профиль – разнообразны по типам; обозначаются номером, соответствующим их высоте в сантиметрах. Трубы круглые имеют диаметр 8... …1620 мм. Трубы могут быть квадратного и прямоугольного сечения.

    В строительстве также широко применяют специальные профили и металлические материалы: стальные канаты и проволоку, профилированные настилы и т.д. [2, стр. 323-325]

    Чугуны.

    Из серого чугуна отливают элементы конструкций, хорошо работающие на сжатие: колонны, опорные подушки, башмаки, тюбинги, отопительные батареи, трубы водопроводные и канализационные, плиты для полов, станины и корпусные детали станков, головки и поршни двигателей, зубчатые колеса и другие детали.

    Ковкий чугун получают после длительного отжига % белого чугуна при высоких температурах, когда цементит почти полностью распадается с выделением свободного углерода на ферритной или перлитной основе. Углеродные включения имеют округлую форму. В отличие от серых ковкие чугуны являются более прочными и пластичными и легче обрабатываются.

    Высокопрочные (модифицированные) чугуны значительно превосходят обычные серые по прочности и обладают некоторыми пластическими свойствами. Их применяют для отливок ответственных деталей.

    При испытании серого и высокопрочного чугунов определяют предел прочности при растяжении, изгибе и сжатии, а при испытании ковкого чугуна – предел прочности при растяжении, относительное удлинение и твердость.

    При маркировке серого и модифицированного чугуна, например СЧ12-28, первые две цифры обозначают предел прочности при растяжении, последующие две – предел прочности при изгибе. [2, стр. 325-326]

    Алюминий – в чистом виде в строительстве применяют редко (краски, газообразователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мn, Сn, Mg, Si, Fe) и используют некоторые технологические приемы.

    Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. Но в основном титан применяется в оборонной и космической промышленности.
























    5. Электрофизические методы обработки металлов. Диаграмма железоуглерод


    Электрофизические методы по сравнению с обычной обработкой резанием имеют ряд преимуществ. Они позволяют обрабатывать заготовки из материалов с высокими механическими свойствами (твердые сплавы, алмаз, кварц и др.), которые трудно или практически невозможно обрабатывать другими методами. Кроме этого, указанные методы дают возможность получать самые сложные поверхности, например отверстия с криволинейной осью, глухие отверстия фасонного профиля и т.д. К числу таких методов относят электроэрозионную, электрохимическую и анодно-механическую обработку металлов.

    В основе электроэрозионной обработки металлов лежит процесс электроэрозии, т.е. разрушения поверхностей электродов при электрическом разряде между ними ( 56). Электроэрозионную обработку производят на специальных (электроискровых, электроимпульсных) станках.

    Инструментом для обработки служит электрод, изготовленный из меди, латуни, бронзы, алюминия или некоторых других материалов. Он имеет форму, соответствующую форме требуемой поверхности обрабатываемой детали.

    Заготовку помещают в ванну с жидкостью, не проводящей электрический ток. Инструмент и заготовку подключают в станке к источнику электрического тока. При сближении инструмента (катода) и заготовки (анода), когда искровой промежуток становится очень малым, между ними происходит электрический разряд. В результате температура на обрабатываемой поверхности заготовки мгновенно достигает 8000—10 000°С, что приводит к местному расплавлению, частичному испарению и взрыво-подобному выбросу микрочастиц с поверхности заготовок. Выброшенные частицы металла в жидкой среде затвердевают и оседают на дно ванны. При подаче электрода-инструмента искровые разряды многократно повторяются и, образуют в заготовке лунку, отображающую форму инструмента.

    Электроэрозионную обработку широко применяют для получения различных отверстий, пазов, углублений при изготовлении штампов, пресс-форм, кокилей и т.д.

    Электрохимическая обработка заключается в том, что под воздействием электрического тока разрушаются поверхностные слои металла детали, помещенной в электролит. Частицы металла, лежащие на поверхности детали, растворяются в электролите, и деталь становится блестящей (электролитическое полирование), В том случае, если поверхности должны быть приданы определенные размеры, применяют специальный инструмент для механического удаления разрушенной пленки металла.

    Анодно-механическая обработка металлов построена на сочетании электроэрозионного и электрохимического процессов. Ее сущность заключается в следующем. Через обрабатываемую заготовку (анод) и вращающийся инструмент (катод) пропускается постоянный электрический ток. Анод и катод находятся в среде электролита. Электрический ток, проходя через электролит, разлагает его и растворяет поверхность заготовки (анода). На поверхности заготовки постоянно образуется не проводящая ток пленка. Вращающийся инструмент (катод) механически срывает эту пленку. При точечном срыве пленки и частичном пробивании' ее на вершинах микронеровностей в местах контакта инструмента проходит ток большой плотности, под действием которого микронеровности оплавляются. Оплавляемые частицы металла удаляют вращающимся инструментом.

    Анодно-механический способ обработки металлов применяют для затачивания пластинок из твердых сплавов и для резки очень твердых и вязких металлов.

    Ниже на рисунке приведена полная диаграмма состояния системы (стабильная система Fe-Cгр и метастабильная система Fe-FeC).




    Диаграмма состояния железо-углерод даёт представление о строении железоуглеродистых сплавов – сталей и чугунов.

    Образование твёрдых растворов при нагревании было установлено Р. Аустеном (Англия), что было доказано прямым металлографическим анализом Ле-Шателье (Франция), А.А. Байковым и Н.Т. Гудцовым (Россия).

    Используя эти данные, а также разработанную теорию фазовых равновесий Д. Гиббса (Канада), голландский учёный Розебум, а также и Р. Аустен представили первый вариант диаграммы железо-углерод. Неполнота сведений, которыми располагали эти исследователи, не позволила им построить диаграмму во всех областях, отвечающих действительному фазовому равновесию. Лишь к концу XIX века немецкий учёный П. Геренс, использовавший опыт своих предшественников и новые данные по микроструктурному и термическому анализу железоуглеродистых сплавов, привёл в своей книге диаграмму железо-углерод, достаточно близко отвечающую современному варианту. Позже… были внесены хоть и существенные, но не принципиальные уточнения в диаграмме железо-углерод. Дальнейшие работы по изучению диаграммы железо-углерод продолжаются и сейчас.

    Диаграмма железо-углерод, как явствует из названия, должна распространяться от железа до углерода. Железо с углеродом образует ряд химических соединений: Fe3C; Fe2C; FeC и др. и, следовательно, система железо-углерод должна быть отнесена к сложной форме диаграммы с химическими соединениями.

Если Вас интересует помощь в НАПИСАНИИ ИМЕННО ВАШЕЙ РАБОТЫ, по индивидуальным требованиям - возможно заказать помощь в разработке по представленной теме - Контрольная по металлургии ... либо схожей. На наши услуги уже будут распространяться бесплатные доработки и сопровождение до защиты в ВУЗе. И само собой разумеется, ваша работа в обязательном порядке будет проверятся на плагиат и гарантированно раннее не публиковаться. Для заказа или оценки стоимости индивидуальной работы пройдите по ссылке и оформите бланк заказа.