Репетиторские услуги и помощь студентам!
Помощь в написании студенческих учебных работ любого уровня сложности

Тема: Космические методы в геологии

  • Вид работы:
    Реферат по теме: Космические методы в геологии
  • Предмет:
    Другое
  • Когда добавили:
    06.03.2012 20:52:44
  • Тип файлов:
    MS WORD
  • Проверка на вирусы:
    Проверено - Антивирус Касперского

Другие экслюзивные материалы по теме

  • Полный текст:

    Оглавление


    Введение. 3

    1. Сущность и значение изучения геологического строения из космоса. 4

    2. Дешифрование космических снимков и его практическое применение. 6

    Заключение. 14

    Список литературы.. 15


    Введение


    Актуальность данной работы обусловлена тем, что космические методы в геологии могут значительно упростить и поиск месторождений полезных ископаемых, особенно в труднодоступных районах, а также в самом широком спектре необходимых исследований, а также ряде других важных дисциплинах.

    Эти методы нашли широкое применение при геологических исследованиях, прогнозировании и поисках месторождений полезных ископаемых, изучении сейсмоопасных зон и активности экзогенных процессов (эрозионных, абразионных, карстово-суффозионных, склоновых обвально-оползневых), инженерно-геологических изысканиях, структурно-геоморфологических и неотектонических исследованиях, изучении шельфа, мониторинге геологической среды, в геоэкологии.

    Отсюда видно, что космические в геологии имеют важнейшее значение, причем в самых различных отраслях – от поиска месторождений полезных ископаемых до экологии, от вопросов безопасности (например, при изучении сейсмоопасных или оползневых зон) до экологических вопросов.

    На всех космических снимках независимо от геологического, геоморфологического строения региона, истории его развития и климата выделяются линейные, кольцевые и площадные объекты.

    Далее космические объекты будут обозначаться КС, и будет дана их краткая характеристика.

    Цель работы – описать космические методы в геологии.

    Задачи работы состоят в следующем:

    1. Описать сущность и значение изучения геологического строения из космоса;

    2. Показать сущность дешифровки космических снимков и его практическое применение.

     1. Сущность и значение изучения геологического строения из космоса


    Космические снимки стали применять в геологии с 60-х годов. Доступные вначале только для специалистов, они быстро получили широкое признание. На этой базе оформились самостоятельные виды региональных геологических исследований, созданы карты нового типа: космогеологические, космотектонические, космогеодинамические; открыты месторождения полезных ископаемых. Постоянно совершенствуются методы получения космической информации, способы ее преобразования и компьютерной обработки.

    При аэрокосмических съемках регистрируются отраженная от поверхности Земли солнечная радиация и собственное электромагнитное поле системы земная поверхность-атмосфера. Для дистанционного зондирования используют следующие диапазоны волн: ультрафиолетовый (0,27-0,4 мкм), видимый (0,4-0,78 мкм), инфракрасный (ближний 0,7-0,9 мкм; тепловой 3,5-5,0 и 8,0-14 мкм), микроволновой (0,30-10 см). В видимом и инфракрасном диапазонах съемки проводят фотографическими, телевизионными и сканерными методами, в которых используют естественное отражение или вторичное тепловое излучение объектов, обусловленное солнечной радиацией. Эти методы называют пассивными. Активные – радарные методы применяют в микроволновой области излучения, создаваемого искусственным источником направленного действия[1].

    Космические снимки получают с межпланетных автоматических станций, искусственных спутников Земли, пилотируемых космических кораблей и долговременных орбитальных станций. От масштаба и пространственного разрешения космических снимков, под которым понимают размеры минимального объекта, различимого на снимке, зависят его обзорность и генерализация изображения. Различают снимки глобального, континентального, регионального, локального и детального уровней генерализации. Космические снимки детального уровня генерализации близки к высотным аэрофотоснимкам и имеют разрешение на местности первые метры и выше. Снимки локального уровня генерализации отличаются пространственным разрешением в первые десятки метров и захватывают территории в сотни квадратных километров. Их получают фотографическими и телевизионными системами с высококачественной аппаратурой. Снимки регионального уровня генерализации позволяют распознавать объекты размером от многих десятков до сотен метров на площади захвата в первые десятки тысяч квадратных километров. Это обычно фотографические и сканерные снимки с пилотируемых космических кораблей и искусственных спутников Земли. Снимки континентального уровня генерализации (телевизионные и сканерные снимки со спутников) имеют разрешение многие сотни метров, а площади, изображенные на них, составляют сотни тысяч до миллионов квадратных километров. Естественно, что уровень генерализации снимков определяет, какого ранга геологические объекты могут одновременно находиться в поле зрения исследователя. Для изучения разномасштабных геологических структур применяются космические снимки разных уровней генерализации. Качественно новую информацию получают при изменении масштаба снимков в 3-5 раз.

    Космические снимки изучают специалисты различных областей геологии, которые из интегральной картины, запечатленной на снимке, извлекают необходимую информацию, то есть дешифрирование является тематическим и целевым. Что именно можно прояснить в геологии, изучая космические снимки? Ответ на этот вопрос будет дан в следующей главе.

    2. Дешифрование космических снимков и его практическое применение


    Линейные объекты на КС называют линеаментами (линеаментум – линия, черта). Этот термин ввел в геологическую литературу в начале века американский исследователь В. Хоббс для обозначения прямолинейных форм на земной поверхности, необязательно связанных с тектоническими разрывами и смещениями по ним.

    В настоящее время под линеаментами понимают линейные неоднородности земной коры и литосферы разного ранга, протяженности, глубины и возраста заложения, которые проявлены на земной поверхности прямо (разрывами) или опосредованно, геологическими и ландшафтными аномалиями. Такие линейные аномалии могут быть обусловлены скрытыми разломами фундамента, флексурными (коленообразными изгибами слоев) и трещинными зонами в перекрывающих осадочных отложениях плитного чехла.

    Типичными представителями линеаментов являются разрывные нарушения земной коры. Они образуются в различных геодинамических условиях, характеризуются разным строением и выражением на КС. Сбросы, формирующиеся в условиях растяжения земной коры и имеющие наклон поверхности разрыва в сторону опущенных пород, отличаются на КС прямолинейностью, нередко хорошо выраженными уступами, разделяющими блоки с различным геологическим строением, типами рельефа и характером расчлененности. Раздвиги, перемещение горных пород по которым при растяжении происходит перпендикулярно к поверхности отрыва, обычно заполнены магматическими породами, образующими вертикальные вытянутые узкие тела (дайки) и целые дайковые рои, но могут быть и зияющими. Взбросы, у которых поверхность сместителя наклонена в сторону поднятых пород, имеют слабо дугообразную форму в плане, выпуклостью направленную в сторону перекрываемых, более молодых пород. Образуются взбросы в обстановке латерального сжатия.



     














    Рис. 1. Региональные сдвиги Сан-Андриас (1) и Гэрлок (2) со спутника


    Надвиги образуются при общем продольном сжатии параллельно с образованием складок. Горизонтальный, пологий или волнистый надвиг с амплитудой перемещения до десятков и даже сотен километров называется тектоническим покровом, или шарьяжем. Они широко распространены в подвижных складчатых системах (Карпаты, Кавказ, Урал, Камчатка). На КС шарьяжи отличаются сложным фестончатым рисунком перемещенных масс (аллохтона), которые в процессе движения распадаются на отдельные пластины, а складчатое строение их сильно усложняется. Во фронтальной части покрова могут присутствовать экзотические останцы (клиппы), отделенные эрозией от аллохтона, а также тектонические окна в аллохтоне, где экзогенными процессами удалены породы его верхних частей[2].

    В рельефе линеаменты выражаются закономерно ориентированными зонами, образованными прямолинейными границами горных хребтов и кряжей, берегов морей, озер и крупных болот, спрямленными участками речных и ледниковых долин, цепочками просадок различного генезиса и пр. Ширина таких зон составляет от первых до десятков километров. Поэтому на аэрофотоснимках и при наземных наблюдениях линеаменты обнаруживаются с трудом. На КС они получают отражение благодаря обзорности и генерализации изображения.

    Граничные линеаменты проявлены на снимках с наибольшей выразительностью. Обычно они являются разломными границами блоков земной коры разного порядка. Самые значительные из них – системы разрывов, разделяющие основные геоструктурные области: складчатые пояса (например, в Евразии Средиземноморский, Урало-Монгольский, Тихоокеанский) и основные платформенные области (Восточно-Европейская, Сибирская, Индийская древние платформы). Менее протяженные линеаменты разделяют геоструктурные регионы (щиты платформ, плиты, складчатые системы). В пределах каждого региона устанавливается устойчивая связь линеаментов с внутренним строением верхних горизонтов земной коры.

    Секущие линеаменты пересекают территории с различным геологическим строением и историей развития. Обычно эти полосовые аномалии, четкие в горно-складчатых областях, в пределах платформенных равнин имеют неявные, расплывчатые границы, отражая латеральные неоднородности литосферы. Установлено, что, чем выше уровень генерализации и ниже пространственное разрешение КС, тем более глубинные структуры изображаются на них. Для одноранговых секущих линеаментов характерны примерно одинаковая плотность по всей территории и регулярность (эквидистантность, шаг повторяемости). Секущие линеаменты проявляются на поверхности в виде зон концентрации трещин и разрывов, в изменении морфологии горно-складчатых систем, преломлении или смещении систем покровно-складчатых структур, замыкании или виргации зон прогибаний и поднятий, погружении складок. Секущие линеаменты, как правило, отражают позднекайнозойскую стадию развития земной коры. Молодость линеаментов подтверждается их распространением на платформах со слабо деформированным мощным плитным чехлом мезозойско-кайнозойских отложений. Несмотря на равнинный рельеф и нередко сильную антропогеновую нарушенность ландшафта, линеаменты установлены на Русской плите, в Западной Сибири, равнинном Крыму и многих других платформенных регионах.

    Линеаменты образуют достаточно выдержанную сеть из нескольких доминирующих направлений, хорошо согласующихся с планетарной трещиноватостью, обусловленной ротационными напряжениями верхней оболочки Земли. Эти направления одинаково свойственны как горно-складчатым, так и смежным с ними платформенным областям.

    Кольцевые структуры, иначе называемые изометричными, концентрическими, центрального типа, ринг-структурами, представляют собой геологические тела разного генезиса и возраста, у которых есть центр симметрии. Выявляются они различными методами: геологической съемкой, геоморфологическими, геофизическими. На КС эти структуры выражаются спектрометрическими аномалиями и рисунками изображения и подчеркиваются нередко системами концентрических и дуговых элементов. Кольцевые структуры известны давно, но с появлением КС они стали предметом особого внимания геологов. Большой интерес к ним вызван не толькотем, что благодаря КС кольцевые структуры стали устанавливаться повсеместно, а главным образом потому, что более чем к 70% из них оказались приурочены различные виды полезных ископаемых.

    Это имеет крайне важное отношение к геологии.

    Размеры кольцевых структур – от десятков километров до многих сотен и первых тысяч километров в поперечнике. Происхождение их разнообразно, а распространение на континентах примерно равномерно. Однако кольцевые структуры различных генетических типов группируются в разных по геологическому строению и истории развития регионах. Расположение их отражает латеральные структурно-вещественные неоднородности разных глубинных уровней Земли.

    Физико-геологические процессы, протекающие на поверхности Земли, могут также приводить к образованию кольцевых структур, например: карстовых (при растворении и выщелачивании горных пород поверхностными и подземными водами), суффозионных (при выносе подземными водами тончайших частиц), термокарстовых (при вытаивании подземного льда) просадок и т.п.

    На космических снимках выявляются кольцевые структуры и внеземного происхождения.

    Космогенные структуры имеют характерные морфологические особенности: небольшую глубину по сравнению с диаметром, кольцевой, периферийный вал вокруг воронки и центральную горку. Размеры их варьируют от нескольких десятков метров до 100 км (преобладают 2-33 км), а возраст известных структур – от современности (Сихотэ-Алинь) до 2 млрд лет (Вредефорт в Южной Африке).

    Ведущим признаком космогенного генезиса структур является наличие метеоритного вещества в значительных количествах и следов шок-метаморфизма в породах. Похожие структуры и слагающие их породы и минералы образуются при специфическом вулканизме, связанном с природными химическими газовыми взрывами. При развитии близповерхностного газонасыщенного магматического очага в ходе неоднократных резких колебаний температур и давлений, катастрофически быстрого отделения огромного объема газов и их взрывного окисления может возникнуть вся гамма эффектов ударного метаморфизма. Эндогенное происхождение таких криптовулканических структур доказывается длительностью и сложностью процессов их образования, закономерной локализацией,присутствием пород с признаками ударного метаморфизма за пределами структур, аналогией с породами явно эндогенного происхождения.

    Площадные объекты на космических снимках имеют сложные очертания и представлены складчатыми и блоковыми тектоническими деформациями, структурно-вещественными комплексами горных пород, генетическими типами рыхлых отложений.

    На космических снимках прежде и лучше всего отражены основные формы современного рельефа, которые определены в основных своих чертах позднекайнозойской структурой, сформированной эндогенными процессами за последние 35-40 млн лет. Поэтому на снимках континентального уровня генерализации выделяются крупные латеральные неоднородности земной коры и литосферы с различной интенсивностью и направленностью (поднятия / опускания) новейших тектонических движений, границы которых совпадают с линеаментами. В орогенических областях такие площадные объекты представлены антиклинальными и синклинальными мегаскладками основания и мезозойско-кайнозойскими складками чехла (рис. 5), горстами, грабенами, впадинами разной морфологии, выраженными в рельефе. В платформенных областях, где фундамент, за исключением щитов, перекрыт чехлом осадочных отложений, а амплитуды тектонических движений и деформаций на порядок ниже, геологические структуры устанавливаются по косвенным, ландшафтно-индикационным признакам.

    На космических снимках более крупного масштаба и пространственного разрешения дешифрируются геологические тела, образованные стратифицированными толщами относительно выдержанного вещественного состава и однотипного характера дислоцированности (вещественно-структурные комплексы). Детальность их расчленения зависит от геолого-структурных и ландшафтно-климатических особенностей района. Наиболее высокая она в геологически открытых районах с литоморфным рельефом, где на современный денудационный срез выведены коренные породы разного возраста, и с различными противоденудационными свойствами, нашедшими отражение в рельефе: крепкие породы образуют гряды, а менее прочные – межгрядовые понижения. В геологически закрытых районах плит, где на поверхности на больших площадях распространены четвертичные отложения, возможно выделение генетических типов четвертичных отложений (флювиальных, ледниковых, делювиальных). Информативность космических снимков разная в регионах с различным геологическим и геоморфологическим строением[3].

    Заключение


    В работе была исследована важная тема космических методов в геологии, имеющая прямое отношение к самым разным сферам - добыче полезных ископаемых, прогнозированию опасных явлений вроде землетрясений, экологическим вопросам.

    Можно сделать следующий вывод.

    КС нашли широкое применение при геологических исследованиях, прогнозировании и поисках месторождений полезных ископаемых, изучении сейсмоопасных зон и активности экзогенных процессов (эрозионных, абразионных, карстово-суффозионных, склоновых обвально-оползневых), инженерно-геологических изысканиях, структурно-геоморфологических и неотектонических исследованиях, изучении шельфа, мониторинге геологической среды, в геоэкологии. Применению космической информации в геологии посвящено очень много научных работ, лишь малая часть из которых приведена ниже в списке литературы.

    Дальнейшее совершенствование применения метода исследования КС может привести к большому упрощению геологических (и не только) изысканий.

    Список литературы


    1. Космическая информация в геологии. М.: Наука, 2003. - 536 с.

    2. Кронберг П. Дистанционное изучение Земли: Пер. с нем. / П. Кронберг. - М.: Мир, 2008. - 343 с.

    3. Михайлов А.Е., Корчуганова Н.И., Баранов Ю.Б. Дистанционные методы в геологии. / Е.А. Михайлов, И.Н. Корчуганова, Б.Ю. Баранов. - М.: Недра, 1993. - 224 с.



    [1] Кронберг П. Дистанционное изучение Земли: Пер. с нем. / П. Кронберг. - М.: Мир, 2008. – C.56-58

    [2] Михайлов А.Е., Корчуганова Н.И., Баранов Ю.Б. Дистанционные методы в геологии. / Е.А. Михайлов, И.Н. Корчуганова, Б.Ю. Баранов. - М.: Недра, 1993. – с.109-127

    [3] Космическая информация в геологии. М.: Наука, 2003. – C.52-58

Если Вас интересует помощь в НАПИСАНИИ ИМЕННО ВАШЕЙ РАБОТЫ, по индивидуальным требованиям - возможно заказать помощь в разработке по представленной теме - Космические методы в геологии ... либо схожей. На наши услуги уже будут распространяться бесплатные доработки и сопровождение до защиты в ВУЗе. И само собой разумеется, ваша работа в обязательном порядке будет проверятся на плагиат и гарантированно раннее не публиковаться. Для заказа или оценки стоимости индивидуальной работы пройдите по ссылке и оформите бланк заказа.