Репетиторские услуги и помощь студентам!
Помощь в написании студенческих учебных работ любого уровня сложности

Тема: Эссе по экологии

  • Вид работы:
    Эссе по теме: Эссе по экологии
  • Предмет:
    Другое
  • Когда добавили:
    22.03.2012 11:28:14
  • Тип файлов:
    MS WORD
  • Проверка на вирусы:
    Проверено - Антивирус Касперского

Другие экслюзивные материалы по теме

  • Полный текст:

    Введение

    Проблема экологии окружающей среды является одной из глобальных проблем современности. Особенность этой проблемы заключается в том, что она имеет общемировой характер, то есть затрагивает интересы всех народов мира, угрожает гибелью всему человечеству, она нуждается в эффективных решениях, требует совместных усилий государств и народов.

    Газообразные выбросы очень не благоприятно влияют на экологическую обстановку в местах расположения промышленных предприятий а также ухудшают санитарно-гигиентческие условия труда.К агрессивным массовым выбросам относят оксиды азота сероводород, сернистый углекислый и многие другие газы.

    Азотнокислотные, сернокислотные и другие заводы нашей страны ежегодно выбрасывают в атмосферу десятки миллионов кубометров окислов азота, предствавляющих собой сильный и опасный яд. Из этих окислов азота можно было выработать тысячи тонн азотной кислоты.

    Очень важной задачей является очистка газов от двуокиси серы. Общее количество серы, которое выбрасывается в нашей стране в атмосферу только в виде сернистого газа составляет около 16 млн тонн в год. Из этого количества серы можно выработать до 40 млн тонн серной кислоты.

    Значительное количество серы, главным образом в виде сероводорода  содержится в коксовом газе.

    Серосодержащий газ используемый в металлургической промышленности для обогрева мартеновских и нагревательных печей вызывает угар металла и повышает содержание серы и стали, ухудшая ее качество.Потери металла при этом исчисляются сотнями тысяч тонн в год.

    С домовыми газами из заводских труб и энергетических установок ежегодно выбрасывается в атмосферу несколько миллиардов кубометров  углекислого газа. Этот газ может быть использован для получения эффетивных углеродосодержащих удобрений.

    Приведенные примеры,показывают какие огромные материальные ценности выбрасываются в атмосферу с газовыми выбросами.

    Но более серьезный ущерб эти выбросы приносят тем что они отравляют воздушный бассейн в городах и на предприятиях: ядовитые газы губят растительность, крайне вредно действуют на здоровье людей и животных, разрушают металлические сооружения и коррозируют оборудование.

    Хотя в последние годы отечественные промышленные предприятия работают не на полную мощность, но проблемы борьбы с выбросами стоит очень строго. А учитывая общую экологическую обстановку на планете, необходимо принимать самые срочные меры по очистке выбросных газов от вредных примесей.












    Способы очистки газовых выбросов в атмосферу

    В настоящее время разработано и опробовано в промышленности большое количество различных методов очистки газов от технических за-грязнений: NOx, SO2, H2S, NH3, оксида углерода, различных органических и неорганических веществ.

    Различают следующие способы очистки газовых выбросов в атмосферу:абсорбционный способ,способ окисления, каталитическое окисление,

    адсорбционно-каталитический способ,адсорбционно-окислительный способ.










     


    Давайте подробнее рассмотрим каждый метод очистки газовых выбросових преимущества и недостатки.

    Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта (например, абсорбция NH3 водой для получения аммиачной воды и др.). Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

    Адсорбционный метод являются одним из самых распространенных средств защиты воздушного бассейна от загрязнений. Только в США введены и успешно эксплуатируются десятки тысяч адсорбционных систем. Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты. Активированный уголь (АУ) нейтрален по отношению к полярным и неполярным молекулам адсорбируемых соединений. Он менее селективен, чем многие другие сорбенты, и является одним из немногих, пригодных для работы во влажных газовых потоках. Активированный уголь используют, в частности, для очистки газов от дурно пахнущих веществ, рекуперации растворителей и т.д. Оксидные адсорбенты (ОА) обладают более высокой селективностью по отношению к полярным молекулам в силу собственного неоднородного распределения электрического потенциала. Их недостатком является снижение эффективности в присутствии влаги. К классу ОА относят силикагели, синтетические цеолиты, оксид алюминия. Адсорбционные методы являются одним из самых распространенных в промышленности способов очистки газов. Их применение позволяет вернуть в производство ряд ценных соединений. При концентрациях примесей в газах более 2-5 мг/м3, очистка оказывается даже рентабельной. Основной недостаток адсорбционного метода заключается в большой энергоемкости стадий десорбции и последующего разделения, что значительно осложняет его применение для многокомпонентных смесей.

    Термическое дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750 - 1200 oC. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов. При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.). Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкимиэнергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

    Термокаталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей. Применение каталитических методов чаще всего ограничивается трудностью поиска и изготовления пригодных для длительной эксплуатации и достаточно дешевых катализаторов. Гетерогенно-каталитическое превращение газообразных примесей осуществляют в реакторе, загруженном твердым катализатором в виде пористых гранул, колец, шариков или блоков со структурой, близкой к сотовой. Химическое превращение происходит на развитой внутренней поверхности катализаторов, достигающей 1000 м2/г. В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества - от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Обычно каталитическую активность проявляют твердые вещества с ионными или металлическими связями, обладающие сильными межатомными полями. Одно из основных требований, предъявляемых к катализатору - устойчивость его структуры в условиях реакции. Например, металлы не должны в процессе реакции превращаться в неактивные соединения. Современные катализаторы обезвреживания характеризуются высокой активностью и селективностью, механической прочностью и устойчивостью к действию ядов и температур. Промышленные катализаторы, изготавливаемые в виде колец и блоков сотовой структуры, обладают малым гидродинамическим сопротивлением и высокой внешней удельной поверхностью. Основным направлением развития термокаталитических методов является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО. Для концентраций ниже 1 г/м3 и больших объемов очищаемых газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

    Озонные методы применяют для обезвреживания дымовых газов от SO2 (NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 - 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода. Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачуего на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др. понижается до 60-80 oC. В качестве катализатора используют как Pt, Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

    Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава. Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов. Микроорганизмы БП в процессе своей жизнедеятельности поглощают и разрушают содержащиеся в газовой среде вещества, в результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение. В настоящее время биофильтры используют для очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений. К недостаткам биохимических методов следует отнести: низкую скорость биохимических реакций, что увеличивает габариты оборудования; специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей; трудоемкость переработки смесей переменного состава.

    Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.


    Недостатком данного метода являются: недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда наличие остаточного озона, который необходимо разлагать термически либо каталитически существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

    Плазмокаталитический метод - это довольно новый способ очистки, который использует два известных метода - плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая - это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

    Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100oC), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м3.).


    Недостатками данного метода являются: большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м3, при больших концентрациях вредных веществ (свыше 1 г/м3) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом.

    Фотокаталитический метод окисления органических соединений сейчас широко изучается и развивается. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях. [4]









    Заключение

    После рассмотрения всех способов очистки газовых выбросов в атмосферу  хочется сделать вывод что, для полноценной очистки газовых выбросов целесообразны комбинированные методы, в которых применяется оптимальное для каждого конкретного случая сочетание грубой, средней и тонкой очистки газов и паров. На первых порах, когда содержание токсичной примеси очень велико, более подходят абсорбционные методы, а для доочистки — адсорбционные или каталитические.

    Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Это производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов.

    Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален.

    В 21веке определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных технологий:

    1) разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

    2) создание бессточных технологических систем и водооборотных циклов на базе наиболее эффективных методов очистки сточных вод;

    3) переработка отходов производства и потребления в качестве вторичного сырья;

    4) создание территориально-промышленных комплексов с замкнутой структурой материльных потоков сырья и отходов внутри комплекса.

    Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса.

    Уже наступает время, когда мир может задохнуться, если не придет на помощь Природе Человек. Только Человек владеет экологическим талантом – содержать окружающий мир в чистоте.












    Список литературы

             1.Белов С.В. «Безопасность жизнедеятельности» М.: Высшая школа, 1999 г.

    2.Данилов-Данильян В.И. «Экологические проблемы: что происходит, кто виноват и что делать?» М.: МНЭПУ, 1997 г.

    3.Данилов-Данильян В.И. «Экология, охрана природы и экологическая безопасность» М.: МНЭПУ, 1997 г.

    4.Протасов В.Ф. «Экология, здоровье и охрана окружающей среды в России», М.: Финансы и статистика, 1999 г.

    5.Козлов А.И., Вершубская Г.Г. «Медицинская антропология коренного населения Севера России» М.: МНЭПУ, 1999 г.



Если Вас интересует помощь в НАПИСАНИИ ИМЕННО ВАШЕЙ РАБОТЫ, по индивидуальным требованиям - возможно заказать помощь в разработке по представленной теме - Эссе по экологии ... либо схожей. На наши услуги уже будут распространяться бесплатные доработки и сопровождение до защиты в ВУЗе. И само собой разумеется, ваша работа в обязательном порядке будет проверятся на плагиат и гарантированно раннее не публиковаться. Для заказа или оценки стоимости индивидуальной работы пройдите по ссылке и оформите бланк заказа.